公益社団法人有機合成化学協会 SSOCJ - The Society of Synthetic Organic Chemistry, Japan


Mukaiyama Award

2017年度 Mukaiyama Award 受賞者

Mukaiyama Award NewsRelease

本会では、有機合成化学の分野で輝かしい業績を上げ、文化勲章を受章された向山光昭先生(東京大学名誉教授、東京工業大学名誉教授、本会名誉会員、学校法人北里研究所名誉所員)が、2004年に喜寿を迎えられたことならびに米国国立科学アカデミー外国人会員に選出されたことを記念して、有機合成化学の新しい方法論の開拓で顕著な業績を上げた若手研究者を国際的視野に立って表彰するために「Mukaiyama Award」を創設いたしました。

New release: 2017年度Mukaiyama Award受賞者


Mukaiyama Award

名称 Mukaiyama Award
募集期間 4月~8月1日
授与項目 賞状、記念品(楯)および 賞金 海外研究者 $5,000(ドル建て)、国内研究者50万円(税込)
授賞対象者 有機合成化学の新しい方法論の開拓で顕著な業績を上げた研究者であって、原則として本会が定める表彰式に出席し、受賞講演を受諾するもの。45歳以下。毎表彰年度、海外1名、国内1名。
受賞候補者の推薦・応募 1)一般からのNomination
3)Mukaiyama Award 委員会委員の推薦
選考方法 Mukaiyama Award 委員会にて毎年、国内、海外それぞれ1件以内を選考する。
Mukaiyama Award 委員会 1)委員会の構成:委員長(本会学界選出副会長)、委員(国内のみ)4名
授賞式 1)原則として有機合成化学セミナーにて実施する。併せて受賞記念講演を実施する。
広報 1)受賞者発表、Nomination Callを協会誌11月号(英文版)およびホームページに掲載する。
運営方法 1)Mukaiyama Award 基金(指定正味財産)を設置する。
2)寄付金を募集し、Mukaiyama Award 基金に保管する。
3)Mukaiyama Award 基金より事業費用を拠出する。
実施時期および期間 2015年度より実施し、当面は10年間とする。
推薦募集フォーム 受賞候補者の推薦募集フォーム(Word:54k)


  • 2017 Professor Frank GloriusOrganisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Germany

    Professor Frank Glorius

    Contributions: Diverse pioneering contributions with N-heterocyclic carbenes (in organocatalysis, transition metal catalysis and on-surface chemistry), in the field of C-H activation chemistry and in the development of smart screening methods.

  • 2017 Professor Yoshiaki NakaoDepartment of Material Chemistry, Graduate School of Engineering, Kyoto University, Japan.

    Professor Yoshiaki_Nakao.jpg

    Contributions: The development of novel reactions through C-H and C-C functionalization by cooperative metal catalysis.

  • 2016 Professor M. Christina WhiteDepartment of Chemistry,University of Illinois at Urbana-Champaign.

    Professor M. Christina White

    Contributions: cracked the code for selective C-H reactivity and pioneered the late-stage C-H functionalization strategy by developing catalysts with differential sensitivities to C-H bond electronics, sterics, and stereoelectronics that enable predictable site-selective oxidations in complex molecules.

  • 2016 Professor Hideki YorimitsuGraduate School of Science, Kyoto University, Japan

    Professor Professor Hideki Yorimitsu

    Contributions: the curiosity-driven invention of useful reactions and synthetic strategies of striking originality, covering a vast range of chemical sciences from bioactive molecules to atomic layers.

  • 2015 Professor Brian M. StoltzDepartment of Chemistry, California Institute of Technology, U.S.A.

    Professor Brian M. Stoltz

    Contributions; The discovery and development of new reactions and processes for the synthesis of complex natural products and non-naturally occurring bioactive structures.

  • 2015 Professor Shigehiro YamaguchiInstitute of Transformative Bio-Molecules and Graduate School of Science, Nagoya University, Japan

    Professor Shigehiro Yamaguchi

    Contributions; the development of photo- and electro-functional organic molecules. He established several key design principles using main group elements, such as B, Si, or P, and produced various types of fascinating π-conjugated skeletons.

  • 2014 Professor Phil S. BaranDepartment of Chemistry, The Scripps Research Institute, U.S.A.

    Professor Phil S. Baran

    Professor Baran has made the important contributions to the invention of useful new reactions and reagents for the pharmaceutical industry and the total synthesis of complex natural products in a scalable, economic fashion by aiming for "ideality" using C–H functionalization logic.

  • 2014 Professor Masayuki InoueGraduate School of Pharmaceutical Sciences, The University of Tokyo, Japan

    Professor Masayuki Inoue

    Professor Inoue has made the important contributions to the development of creative and novel synthetic methodologies and strategies for total syntheses of structurally complex natural products, and elucidation of molecular rationale of their biological action using the synthetic analogues.

  • 2013 Professor Benjamin ListManaging Director of the Max-Planck-Institut fur Kohlenforschung and Honorary Professor at the University of Cologne, Germany

    Professor fig_Benjamin-List.jpg

    Contributions; List's discovery that amines such as the amino acid proline are general catalysts for asymmetric synthesis has initiated the field of organocatalysis, which is currently revolutionizing chemical synthesis in academia and in industry.

  • 2013 Professor Kenichiro ItamiInstitute of Transformative Bio-Molecules and Graduate School of Science, Nagoya University, Japan

    Professor Kenichiro_Itami

    Contributions; the development of C-H coupling catalysts and application to the synthesis of nanocarbon materials and bioactive molecules.

  • 2012 Professor Jin-Quan YuThe Scripps Research Institute USA

    Professor Jin-Quan Yu

    Contributions; the development of catalytic C-H activation reactions directed by weak coordination and their applications as new disconnections for organic synthesis; Discovery of ligand-accelerated and enantioselective C-H activation reactions.

  • 2012 Professor Ken TanakaDepartment of Applied Chemistry Tokyo University of Agriculture and Technology, Japan

    Professor Ken Tanaka

    Contributions; the development of enantioselective cycloaddition and aromatization reactions using chiral cationic transition-metal complexes as catalysts. These processes enable the catalytic enantioselective construction of non-centrochirality as well as centrochirality.

  • 2011 Professor Dean Toste Department of Chemistry, University of California, Berkeley, USA

    Michael J. Krische

    Contributions; the discovery and development of catalysts and catalyzed reactions, especially those based on gold, and applications in organic synthesis and asymmetric catalysis including the use of chiral anions.

  • 2011 Professor Fumitoshi Kakiuchi Department of Chemistry, Faculty of Science and Technology, Keio University, Japan

    Masahiro Terada

    Contributions; the development of new methods for highly efficient, catalytic, selective functionalization of unreactive carbon-hydrogen and carbon-heteroatom bonds and the elucidation of their reaction mechanisms.

  • 2010 Professor Michael J. Krische Department of Chemistry & Biochemistry, University of Texas at Austin, USA

    Michael J. Krische

    Contributions; the first hydrogen-mediated C-C bond formations beyond alkene hydroformylation. These processes define a departure from stoichiometric organometallic reagents in carbonyl addition and, under transfer hydrogenation conditions, enable carbonyl addition directly from the alcohol oxidation level.

  • 2010 Professor Masahiro Terada Department of Chemistry, Graduate School of Science, Tohoku University, Japan

    Masahiro Terada

    Contributions; the development of novel axially chiral Bronsted acids and bases as efficient enantioselective catalysts for a variety of carbon-carbon bond and carbon-heteroatom bond forming reactions.

  • 2009 Professor Justin Du Bois Department of Chemistry,Stanford University, USA

    Justin Du Bois

    Contributions: The development of novel oxidation processes for the selective modification of unsaturated C-H bonds and the demonstration of the power of these methods to alter the manner in which complex natural products are assembled.

  • 2009 Professor Kazuaki Ishihara Graduate School of Engineering, Nagoya University, Japan

    Kazuaki Ishihara

    Contributions: the rational design of highly functional acid-base combined catalysts which are classified into acid-base combined salt catalysts, acid-base conjugate catalysts, and acid-base non-conjugate catalysts

  • 2008 Professor John F. Hartwig Department of Chemistry University of Illinois, USA

    John F. Hartwig

    Contributions; the discoveries, developments, and mechanistic insights into new classes of catalytic processes, including coupling reactions, C-H bond functionalizations, hydroaminations, and enantioselective substitution reactions.

  • 2008 Professor Kyoko Nozaki Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Japan

    Kyoko Nozaki

    Contributions; the development of new catalysts for the synthesis of structurally well-controlled organic molecules: from small molecules to polymers

  • 2007 Professor David W. C. MacMillan Department of Chemistry, Princeton University, Princeton, USA

    David W. C. MacMillan

    Contributions: the introduction of new catalysis concepts for asymmetric synthesis including the generalization of organocatalysis, iminium catalysis, organo-cascade catalysis and SOMO catalysis

  • 2007 Professor Keiji Tanino Division of Chemistry, Graduate School of Science, Hokkaido University, Japan

    Keiji Tanino

    Contributions: the development of new methods for the total synthesis of natural products having a polycyclic carbon skeleton (e.g., coriolin, ingenol and norzoanthamine) based on carbocation chemistry and organometallic chemistry

  • 2006 Professor Gregory C. Fu, Department of Chemistry, Massachusetts Institute of Technology, U.S.A.

    Gregory C. Fu,

    Contributions: the development of new methods for carbon-carbon bond formation (e.g., cross-coupling reactions) and the design of new chiral catalysts for asymmetric synthesis:

  • 2006 Professor Michinori Suginome Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Japan.

    Michinori Suginome

    Contributions: the development of new methods for the catalytic synthesis of organoboron and organosilicon compounds (e.g., bis-silylation, silaboration and cyanoboration reactions) and of their utilization in organic synthesis

  • 2005 Professor Dr. Alois Fuerstner University of Dortmund and Director at the Max-Planck-Institute fuer Kohlenforschung, Muelheim/Ruhr, Germany

    Dr. Alois Fuerstner

    Professor Fuerstner has made outstanding contributions to development of novel organometallic methodologies and their application to efficient total synthesis of natural products.