Ryoji Noyori Prize

Professor Scott E. Denmark

Reynold C. Fuson Professor of Chemistry at the University of Illinois at Urbana-Champaign, U.S.A.

Professor Denmark has pioneered the concept of chiral Lewis base activation of Lewis acids for catalysis with Main Group elements. He has also developed palladium-catalyzed cross-couplings with organofunctional silicon compounds and mechanistic studies on the Suzuki-Miyaura cross coupling. In recent years, his group has investigated the use of chemoinformatics and machine learning to identify and optimize catalysts for enantioselective reactions. Earlier contributions include the development and application of tandem heterodiene cycloadditions for the synthesis of complex natural and unnatural nitrogen containing compounds. He maintains a longstanding interest in organosilicon, -phosphorus, and –lithium chemistry.

Professor Yoshito Kishi

Morris Loeb Professor of Chemistry, Emeritus, Harvard University, U.S.A.

Professor Kishi has been engaged in a wide range of research on complex natural products with significant biological activities. He pioneered the area of acyclic stereocontrol, completed the total synthesis of numerous complex natural products including neurotoxins (palytoxin, tetrodotoxin, etc.), polyether antibiotics (monensin, lasalocid A, etc.) and antitumor natural products (halichondrins, mitomycin, etc.), and advanced a new concept for stereochemistry assignment of complex organic molecules. Notably, his research efforts on the halichondrin class of marine natural products paved the way for the successful creation of Eisai’s anticancer drug Halaven (Eribulin mesylate).

Mukaiyama Award

Professor Martin D. Burke

Department of Chemistry, University of Illinois at Urbana-Champaign, U.S.A.

Contributions: Pioneering the field of molecular prosthetics and the development of an automated Lego-like platform for democratizing small molecule synthesis.

Professor Shigeki Matsunaga

Faculty of Pharmaceutical Sciences, Hokkaido University, Japan

Contributions: The development of new chiral catalysts for atom- and step-economical organic reactions, such as enantioselective C-H functionalization and C-C bond formation via simple proton-transfer process.

Professor Richmond Sarpong

Department of Chemistry, University of California, Berkeley, U.S.A.

Contributions: Development of strategies and methods for the synthesis of complex molecules, including natural products, by employing chemical network analysis as well as C-H and C-C bond functionalizations.

Professor Shunsuke Chiba

Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore

Contributions: Exploration of new reactivity of main group metal hydrides for development of unique and unprecedented molecular transformations.